Solve $\displaystyle x+20ln|x-20|=234$
The given answer is x is approximately 139, if you need to check.
Do you know about the Lambert W Function?
$\displaystyle \begin{align*} x+20 \cdot \ln(x-20) &=234 \\ 20\cdot \ln(x-20)&=234-x \\ \ln(x-20)&=\frac{234-x}{20} \\ x-20 &= e^{\frac{234-x}{20}} \\ 20\left( \frac{x}{20}-1\right) &= {e^{117 \over 10} \over e^{x \over 20}} \\ \frac{x}{20}-1 &= {e^{117 \over 10} \over 20 \cdot e^{x \over 20}} \\ \frac{x}{20}-1 &= {e^{107 \over 10}\cdot e \over 20 \cdot e^{x \over 20}} \\ \frac{x}{20}-1 &= {e^{107 \over 10} \over 20 \cdot e^{{x \over 20}-1}} \\ e^{{x \over 20}-1}\left( \frac{x}{20}-1\right) &= {e^{107 \over 10}\over 20} \\ {x \over 20}-1 &= W{\left( {e^{107 \over 10}\over 20}\right)} \\ x &= 20\left( W{\left( {e^{107 \over 10}\over 20}\right)}+1\right) \\ x &\approx 138.501\end{align*}$