# Factoring ax + c

• Dec 15th 2011, 08:01 PM
britth
Factoring ax + c
If you were to solve this 64y^2 - 9 would it be y=.375?

What would this look like factored?
• Dec 15th 2011, 08:31 PM
TheChaz
Re: Factoring ax + c
Solve?

If you set it equal to zero, you have the difference of two squares equal to zero.

Can you think of something that, when squared, equals 64y^2 ?
Call that "a". Then "b" = 3.

a^2 - b^2 = (a + b)( a - b)

Setting this to zero and solving will give you two solutions.
• Dec 16th 2011, 08:03 PM
sbhatnagar
Re: Factoring ax + c
You could also

$\displaystyle 64y^2-9=0$

$\displaystyle \implies 64y^2=9$

$\displaystyle \implies 8y=\pm 3$
• Dec 17th 2011, 02:42 AM
e^(i*pi)
Re: Factoring ax + c
Quote:

Originally Posted by britth
If you were to solve this 64y^2 - 9 would it be y=.375?

What would this look like factored?

Solve what - it needs to be equal to something (probably 0 since that does give your answer)

Use the difference of two squares as TheChaz suggested to factor it