Re: Ratio Proportion [SOLVED]

Oooh! I got it now!

$\displaystyle \frac xy = \frac23$

and

$\displaystyle \frac{x+12}{y+12} = \frac{11}{15}$

then

$\displaystyle \15 (x + 12) = 11 (y + 12) $

$\displaystyle = 15x + 180 = 11y + 132 $

$\displaystyle = 180 - 132 = 11y - 15x$

$\displaystyle = 48 = 11y - 15x $

and if

$\displaystyle \frac xy = \frac23$

then

$\displaystyle x = \frac {2y} 3 $

then

$\displaystyle 15x = \frac {15} 1 \!\cdot\! \frac {2y} 3 $

$\displaystyle = \frac {30y}3$

then we go back to

$\displaystyle = 48 = 11y - 15x $

so that becomes

$\displaystyle 48 = 11y - \frac {30y}3 $

$\displaystyle = 48 = 11y - 10y$

$\displaystyle = 48 = y$

So, if $\displaystyle x$ is Katheline and $\displaystyle y$ is Gwen, then

Gwen is 48 years old.

Whoa!!

Thnx a lot @earboth and @mathbyte!

~MoniMini