Results 1 to 3 of 3

Thread: fun with numbers

  1. #1
    Newbie
    Joined
    Feb 2010
    From
    Near Chennai
    Posts
    20

    Talking fun with numbers

    Find the value of 547527/82 if 547.527/0.0082 = x

    options :

    (1) x/10

    (2) 10 x

    (3) 100 x

    (4) x/100
    Follow Math Help Forum on Facebook and Google+

  2. #2
    -1
    e^(i*pi)'s Avatar
    Joined
    Feb 2009
    From
    West Midlands, England
    Posts
    3,053
    Thanks
    1

    Re: fun with numbers

    Quote Originally Posted by sureshrju View Post
    Find the value of 547527/82 if 547.527/0.0082 = x

    options :

    (1) x/10

    (2) 10 x

    (3) 100 x

    (4) x/100
    I can see the value you want to find vary only in powers of 10 to x.

    $\displaystyle 547527 = 547.527 \times 10^3$ and $\displaystyle 82 = 0.0082 \times 10^4$

    Hence $\displaystyle \dfrac{547527}{82} = \dfrac{547.527}{0.0082} \times \dfrac{10^3}{10^4}$

    You know what the first term is equal to so solve the powers of 10 and get the answer.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    12,028
    Thanks
    849

    Re: fun with numbers

    Hello, sureshrju!

    Another approach . . .


    $\displaystyle \text{Find the value of }\,\frac{547527}{82}\,\text{ if }\,\frac{547.527}{0.0082} \,=\, x$

    . . $\displaystyle (1)\;\frac{x}{10} \qquad (2)\;10 x \qquad (3)\;100x \qquad (4)\;\frac{x}{100}$

    We are given:.$\displaystyle \frac{547.527}{0.0082} \:=\:x$

    Multiply by $\displaystyle \frac{10^4}{10^4}\!:\;\;\frac{10^4}{10^4} \cdot \frac{547.527}{0.0082} \:=\:x$

    n . . . . . . . . . . . . . . $\displaystyle \frac{5475270}{82} \:=\:x$

    . . . . . . . . . . . . . $\displaystyle \frac{547527\cdot 10}{82} \:=\:x$

    n . . . . . . . . . . . . . . $\displaystyle \frac{547527}{82} \:=\:\frac{x}{10}$

    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 1
    Last Post: Aug 29th 2011, 02:18 AM
  2. Replies: 1
    Last Post: Sep 27th 2010, 03:14 PM
  3. Replies: 8
    Last Post: Sep 15th 2008, 04:33 PM
  4. Replies: 3
    Last Post: Apr 10th 2008, 05:58 PM
  5. Proving Lucas Numbers and Fibonacci Numbers
    Posted in the Discrete Math Forum
    Replies: 2
    Last Post: Mar 18th 2008, 11:33 PM

Search tags for this page

Search Tags


/mathhelpforum @mathhelpforum