Originally Posted by

**Soroban** Hello, psolaki!

There are two "critical values": .$\displaystyle x \:=\:0,\,1$

The two values divide the number line into three intervals.

. . $\displaystyle \begin{array}{ccccc}----\,- & * & -- & * & ----\,- \\ & 0 && 1 \end{array}$

Test a value of $\displaystyle x$ in each interval.

$\displaystyle \begin{array}{ccccccccc}\text{On }(\text{-}\infty,0)\!: & x &=& \text{-}1 & \Longrightarrow & \dfrac{1}{(\text{-}1)(2)}&=& \text{negative} \\ \\ \text{On }(0,1)\!: & x &=& \tfrac{1}{2} & \Longrightarrow & \dfrac{1}{\left(\frac{1}{2}\right)\left(\frac{1}{2 }\right)} &=& \text{positive} \\ \\ \text{On }(1,\infty)\!: & x &=& 2 & \Longrightarrow & \dfrac{1}{(2)(\text{-}1)} &=& \text{negative} \end{array}$

The inequality is true on the interval $\displaystyle (0,\,1)$

Answer: .$\displaystyle 0 \:<\:x\:<\:1$