Let A be the total area of 5 circles with radius R. And let B be the total area of 3 circles with radius R. If A=B. What is R/S ?
I know that A = 5(pie)*r^2 = 3(pie)*s^2 = B
So, how can I find the value of r and s?
Thanks in advance
Let A be the total area of 5 circles with radius R. And let B be the total area of 3 circles with radius R. If A=B. What is R/S ?
I know that A = 5(pie)*r^2 = 3(pie)*s^2 = B
So, how can I find the value of r and s?
Thanks in advance
I guess s is the radius of the other 3 circles, try also not to use sometimes capital letters and sometimes small letters, that can be really confusing.
If you have:
$\displaystyle A=5\cdot \pi\cdot r^2$
$\displaystyle B=3\cdot \pi \cdot s^2$
If $\displaystyle A=B$ then indeed:
$\displaystyle 5\cdot \pi \cdot r^2 = 3 \cdot \pi \cdot s^2 $
$\displaystyle \Leftrightarrow \frac{r^2}{s^2}=\frac{3}{5}$
So ...