Hi all member.
Can any one help me to demonstrat that (by definition ):
does the folowing function is continuous at x=2.
f(x)=1/(1+x^4).
Thanks.
If you are looking for a $\displaystyle \epsilon-\delta$ proof the you need
$\displaystyle \left| {\frac{1}{{1 + x^4 }} - \frac{1}{{17}}} \right| = \frac{{\left| {16 - x^4 } \right|}}{{17\left( {1 + x^4 } \right)}} \leqslant \left| {2 - x} \right|\left| {2 + x} \right|\left| {4 + x^2 } \right|$
You can control the size of $\displaystyle |x-2|$ factor and bound the other two.