Originally Posted by

**cp3o** *"In a multiple-choice science test Geoff does not know the answer to questions 3 and 8. He has the choice of five answers (A, B, C, D or E) for each question. For question 8 he knows for certain that answers B and E are incorrect. He must guess from the rest of the answers. For questions 3 he must guess from all five of the answers. He is equally likely to choose any of the answers.*

The correct answer to question 3 is E and for question 8 is it A. What is the probability that he gets:

a. Both questions correct.

c. Question 3 correct or questions 8 correct but not both correct.

d. At least one question correct "

I think I can answer a correctly:

P(8 AND 3 correct) = P(1/3) * P(1/5) = 1/15

But for b, I thought the working should be:

P(8 OR 3 correct) = P(1/3) + P(1/5) = P(5/15) + P(3/15) = 8/15

however the answer to b (in the book) is 2/5.