Let: $\displaystyle \frac{1}{x+\sqrt{x-1}} + \frac{2}{y+\sqrt{y-2}} + \frac{3}{z+\sqrt{z-3}} = 12 $
Find min, max: $\displaystyle A=x+y+z $
Let: $\displaystyle \frac{1}{x+\sqrt{x-1}} + \frac{2}{y+\sqrt{y-2}} + \frac{3}{z+\sqrt{z-3}} = 12$
Find min, max: $\displaystyle A=x+y+z$
It is:
Let: \frac{1}{x+\sqrt{x-1}} + \frac{2}{y+\sqrt{y-2}} + \frac{3}{z+\sqrt{z-3}} = 12
Find min, max: A=x+y+z
??? Can somebody help me?