Hi,

Looking for a hint on this one. Right now a bit clueless on how to proceed.

ABCD is a rectangular piece of land and XY is a wall. A fence 60 meters long is used to fence up the land. Find the length and the breadth of the rectangular piece of land when the area is maximum.

I denoted AB = p and BC = q.

Given,

$\displaystyle

\begin{tabular}{ r l }

\(2p + q\) &= \(60\) \\

\(q\) &= \(60 - 2p\) \\

&= \(2(30 - p)\) \\

\\

\(Area\) &= \(p \times q\) \\

\ &= \(2p(30 - p)\) \\

\end{tabular}

$

Am I on the right track. I don't see any other data to use here. Can you please provide a hint on how to proceed.

Thanks!