If $\displaystyle r>0$ and $\displaystyle s>0$ and $\displaystyle \sqrt{\frac{r}{s}} + \sqrt{\frac{s}{r}}$ show that $\displaystyle \frac{r+s}{\sqrt{rs}}$ is equivalent.
Hello, donnagirl!
$\displaystyle \text{If }r>0\text{ and }s>0\text{, show that: }\,\sqrt{\dfrac{r}{s}} + \sqrt{\dfrac{s}{r}} \:=\:\dfrac{r+s}{\sqrt{rs}}$
Just add the radicals . . .
. . $\displaystyle \displaystyle \sqrt{\frac{r}{s}} + \sqrt{\frac{s}{r}} \;=\;\frac{\sqrt{r}}{\sqrt{s}} + \frac{\sqrt{s}}{\sqrt{r}} \;=\;\frac{\sqrt{r}\!\cdot\!\sqrt{r} + \sqrt{s}\!\cdot\!\sqrt{s}}{\sqrt{s}\,\sqrt{r}} \;=\;\frac{r + s}{\sqrt{rs}} $