Results 1 to 4 of 4

Math Help - quadratic equations

  1. #1
    jimmic
    Guest

    quadratic equations

    Hi, I am trying to teach myself algebra from a book. It was going fairly smooth and I understand most of what I have read and practiced. However, I came to a section on quadratic equations whereupon I was presented with a basic form x^2 = 3. It was simple enough to understand that the answer must be either x = 1.73 or -1.73 without any experience with quadratic equations.

    Now, the very next paragraph I was presented with this (x - 1)^2 - 4 = 0 and the simple solution that x = 3 or -1. Then my problem begins as the author goes on to say that the equation (x - 1)^2 - 4 can be "simplified" to x^2 - 2x - 3. How is this possible? where does he get 2x? I have checked the numbers and they are ofcourse correct but how has he made this assumption without knowing the value of x? Is there some sort of mathematical trick I have missed out on here?

    My level of Math is far from impressive so any advice would be helpful please. I would normally just read or re-read to try to understand but one minute the author is making sense then it's asif he just skips a page and assumes you understand
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Global Moderator

    Joined
    Nov 2005
    From
    New York City
    Posts
    10,616
    Thanks
    9
    Quote Originally Posted by jimmic View Post
    Hi, I am trying to teach myself algebra from a book. It was going fairly smooth and I understand most of what I have read and practiced. However, I came to a section on quadratic equations whereupon I was presented with a basic form x^2 = 3. It was simple enough to understand that the answer must be either x = 1.73 or -1.73 without any experience with quadratic equations.

    Now, the very next paragraph I was presented with this (x - 1)^2 - 4 = 0 and the simple solution that x = 3 or -1. Then my problem begins as the author goes on to say that the equation (x - 1)^2 - 4 can be "simplified" to x^2 - 2x - 3. How is this possible? where does he get 2x? I have checked the numbers and they are ofcourse correct but how has he made this assumption without knowing the value of x? Is there some sort of mathematical trick I have missed out on here?

    My level of Math is far from impressive so any advice would be helpful please. I would normally just read or re-read to try to understand but one minute the author is making sense then it's asif he just skips a page and assumes you understand
    (x-1)^2=(x-1)(x-1)

    Now expand this.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Forum Admin topsquark's Avatar
    Joined
    Jan 2006
    From
    Wellsville, NY
    Posts
    9,664
    Thanks
    298
    Awards
    1
    Quote Originally Posted by jimmic View Post
    Now, the very next paragraph I was presented with this (x - 1)^2 - 4 = 0 and the simple solution that x = 3 or -1. Then my problem begins as the author goes on to say that the equation (x - 1)^2 - 4 can be "simplified" to x^2 - 2x - 3. How is this possible? where does he get 2x? I have checked the numbers and they are ofcourse correct but how has he made this assumption without knowing the value of x? Is there some sort of mathematical trick I have missed out on here?
    Do you know the FOIL method?

    As TPH said:
    (x - 1)^2 = (x - 1)(x - 1) = x \cdot x  + x \cdot (-1) + (-1) \cdot x + (-1) \cdot (-1) = x^2 - x -x + 1 = x^2 -2x + 1

    -Dan
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Math Engineering Student
    Krizalid's Avatar
    Joined
    Mar 2007
    From
    Santiago, Chile
    Posts
    3,654
    Thanks
    11
    Quote Originally Posted by jimmic View Post
    Now, the very next paragraph I was presented with this (x - 1)^2 - 4 = 0 and the simple solution that x = 3 or -1. Then my problem begins as the author goes on to say that the equation (x - 1)^2 - 4 can be "simplified" to x^2 - 2x - 3. How is this possible?
    We can use the difference of perfect squares as follows

    <br />
\begin{aligned}<br />
\left( {x - 1} \right)^2 - 4 &= 0\\<br />
\left[ {\left( {x - 1} \right) + 2} \right]\left[ {\left( {x - 1} \right) - 2} \right] &= 0\\<br />
\left( {x + 1} \right)\left( {x - 3} \right) &= 0\\<br />
x^2 - 2x - 3 &= 0<br />
\end{aligned}<br />

    \emph{As desired}~\blacksquare

    P.S.: actually, the last step isn't necessary to get the roots of the equation.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Quadratic Equations in mod 13
    Posted in the Number Theory Forum
    Replies: 4
    Last Post: July 19th 2008, 12:14 PM
  2. Replies: 1
    Last Post: June 12th 2008, 09:30 PM
  3. quadratic equations
    Posted in the Algebra Forum
    Replies: 11
    Last Post: February 22nd 2008, 08:59 PM
  4. [SOLVED] Quadratic Equations
    Posted in the Algebra Forum
    Replies: 2
    Last Post: January 15th 2008, 09:36 AM
  5. Quadratic equations again
    Posted in the Pre-Calculus Forum
    Replies: 2
    Last Post: November 11th 2007, 09:18 AM

/mathhelpforum @mathhelpforum