Hi there
wondering if this can be solved using Algebra?
the product of two numbers is 72 and their sum is 27.
I am interested in the steps to arrive at the numbers 24 and 3.
cheers
Thanks for the quick replies which have thrown up a couple of questions for me.
1. In a quadratic equation is it always ax squared minus bx + c =0 or can the minus be a plus? does it matter?
2. I can't seem to work out how in the factorizing you got from the 1st line to the second
thanks again for your help!
1. The general quadratic is usually written the solution of which is
If you wrote your quadratic as then you'd merely flip the sign of in the solution:
2. When you're factoring a monic quadratic like this one (that is, the coefficient of is 1), your goal is to find two numbers a, b, such that
If you foil out the RHS, you get
Therefore, you want and Does that make sense?
I am stiil not sure how you go from t squared minus 27 t plus 72 equals zero.
to putting in the numbers 24 and 3? Do you just have to work out these numbers in your head or is there a way to foil them out from the first line?
(Sorry I am a bit slow on the math front!)
cheers
OK I see what your saying I thought there may be a process that you could use to drill down to the point where you could get a difinitive x = 24, y =3 or vise versa.
I still can't see how lanierms above went from the first to second line putting in 24 and 3, did he just think of the factors of 72 and work it out in his head?
This is great having this conversation and I appreciate your time!
cheers
Hi AcKbeet I just worked it out! Using your formula above for finding x from a quadratic.
Thanks heaps for your time. One of my sons has just started high school and we try and work things out together so I am sure I''ll be in touch in the future!
This has been a great forum for me. Its just after lunch on a Saturday in Australia.
All the best
Yeah, for a quadratic, I tend to prefer using the quadratic formula. There are times when it's better to factor, but solving quadratics is a fairly routine matter, in the grand scheme of things, so an algorithmic process I don't have to think about too much appeals to me.
You're very welcome. It's almost time to get some shut-eye here in Connecticut, USA.