Results 1 to 4 of 4

Math Help - Log problem

  1. #1
    Newbie
    Joined
    Nov 2009
    Posts
    8

    Log problem

    prove that f(-x)=f(x) if f(x)=(x-\log_3 \frac{2+x}{2-x}) \cdot \log_2 \frac{x+1}{x-1}

    f(-x)=(-x-\log_3 \frac{2+(-x)}{2-(-x)}) \cdot \log_2 \frac{-x+1}{-x-1}

    f(-x)=(-x-\log_3 \frac{2-x}{2+x}) \cdot \log_2 \frac{-(x-1)}{-(x+1)}

    f(-x)=(-x-\log_3 \frac{2-x}{2+x}) \cdot \log_2 \frac{x-1}{x+1}

    ???
    Follow Math Help Forum on Facebook and Google+

  2. #2
    No one in Particular VonNemo19's Avatar
    Joined
    Apr 2009
    From
    Detroit, MI
    Posts
    1,823
    Quote Originally Posted by livmed View Post
    prove that f(-x)=f(x) if f(x)=(x-\log_3 \frac{2+x}{2-x}) \cdot \log_2 \frac{x+1}{x-1}

    f(-x)=(-x-\log_3 \frac{2+(-x)}{2-(-x)}) \cdot \log_2 \frac{-x+1}{-x-1}

    f(-x)=(-x-\log_3 \frac{2-x}{2+x}) \cdot \log_2 \frac{-(x-1)}{-(x+1)}

    f(-x)=(-x-\log_3 \frac{2-x}{2+x}) \cdot \log_2 \frac{x-1}{x+1}

    ???
    This is an exercise in the properties of logs. Try to reduce the logs to an expression containing one logarithm only. Make use of the facts that \log{a}-\log{b}=\log\frac{a}{b} and the other properties that may be needed.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,546
    Thanks
    539
    Hello, livmed!

    \displaystyle\text{If }f(x)\:=\:\left(x-\log_3 \frac{2+x}{2-x}\right) \cdot \log_2 \frac{x+1}{x-1},\;\text{prove that }f(\text{-}x) \,=\,f(x).


    \displaystyle f(\text{-}x)\;=\;\left(\text{-}x-\log_3 \frac{2+(\text{-}x)}{2-(\text{-}x)}\right) \cdot \log_2 \frac{\text{-}x+1}{\text{-}x-1}

    \displaystyle f(\text{-}x)\;=\;\left(-x-\log_3 \frac{2-x}{2+x}\right) \cdot \log_2 \frac{\text{-}(x-1)}{\text{-}(x+1)}

    \displaystyle f(\text{-}x)\;=\;\left(\text{-}x-\log_3 \frac{2-x}{2+x}\right) \cdot \log_2 \frac{x-1}{x+1}

    You're doing great!

    \displaystyle f(\text{-}x) \;=\;\left(\text{-}x + (\text{-}1)\log_3\frac{2-x}{2+x}\right) \cdot \log_2\frac{x-1}{x+1}

    \displaystyle f(\text{-}x) \;=\;\left(\text{-}x + \log_3\left[\frac{2-x}{2+x}\right]^{-1}\right)\cdot\log_2\frac{x-1}{x+1}

    \displaystyle f(\text{-}x) \;=\;\left(\text{-}x + \log_3\frac{2+x}{2-x}\right) \cdit \log_2\frac{x-1}{x+1}


    \displaystyle f(\text{-}x) \;=\;(\text{-}1)\left(x - \log_3\frac{2+x}{2-x}\right)\cdot\log_2\frac{x-1}{x+1}

    \displaystyle f(\text{-}x) \;=\;\left(x - \log_3\frac{2+x}{2-x}\right)\cdot (\text{-}1)\cdot\log_2\frac{x-1}{x+1}

    \displaystyle f(\text{-}x) \;=\;\left(x - \log_3\frac{2+x}{2-x}\right)\cdot \log_2\left(\frac{x-1}{x+1}\right)^{-1}

    \displaystyle f(\text-}x) \;=\;\left(x - \log_3\frac{2+x}{2-x}\right) \cdot \log_2\frac{x+1}{x-1} \;=\;f(x)

    . . . . . \text{ta-}DAA!

    Follow Math Help Forum on Facebook and Google+

  4. #4
    Newbie
    Joined
    Nov 2009
    Posts
    8
    interesting, thanks
    Follow Math Help Forum on Facebook and Google+

Search Tags


/mathhelpforum @mathhelpforum