The first polynomial obviously does not have positive roots because when s > 0.

For the second polynomial, there are several ways to reason. First, Descartes' rule of signs says that it has exactly one positive root. One can also note that if , then , but, say, , so must have an x-intercept. I am sure there are other ways; what you want probably depends on what methods you have studied.

Edit: With a bit of trial-and error (or some factorization tools) one can see that . One can use the rational root theorem to check if a polynomial has rational roots.