Help! Please!
Express in the simplest form -
log(lower)3(/lower) 23 + 1
1/2 + 3log(lower)10(/lower) x^2
Solve for X
log (lower)x+1(/lower) 27 = 3
-log(lower)3x-1(/lower)1/32 = 5
Hello,
I assume that you mean:
$\displaystyle \log_{x+1}(27) = 3 \Longleftrightarrow 27 = (x+1)^3 \Longleftrightarrow 3^3 = (x+1)^3 \Longleftrightarrow 3 = x+1 \Longleftrightarrow x = 2$
$\displaystyle -\log_{3x-1}\left( \frac{1}{32}\right) = 5 \Longleftrightarrow \frac{1}{32} = (3x-1)^{-5}$$\displaystyle \Longleftrightarrow 2^{-5}= (3x-1)^{-5} \Longleftrightarrow 2 = 3x-1 \Longleftrightarrow x = 1$
Hello,
not certain if you are looking for this:
$\displaystyle \log_{3}(23) + 1 \Longrightarrow \log_{3}(23) + \log_{3}(3) = \log_{3}(23 \cdot 3) = \log_{3}(69)$
$\displaystyle \frac{1}{2}+3 \cdot \log_{10}(x^2) = \log_{10}(\sqrt{10}) + \log_{10}(x^6) = \log_{10}( \sqrt{10} \cdot x^6)$