# Thread: Writing an expression as a sum or difference of logs??

1. ## Writing an expression as a sum or difference of logs??

Write ln [((x-3)^4(x+5)^1/2)/((2x-7)^9(x^1/3))] as a sum or difference of logarithms with all exponents simplified as far as possible.

2. Originally Posted by yess
Write ln [((x-3)^4(x+5)^1/2)/((2x-7)^9(x^1/3))] as a sum or difference of logarithms with all exponents simplified as far as possible.
1. Use the following laws of logs:

$\log(a\cdot b)=\log(a)+\log(b)$

$\log\left(\dfrac ab \right)=\log(a)-\log(b)$

$\log\left(a^n\right)=n\cdot \log(a)$

2. $\ln\left(\dfrac{(x-3)^4 \cdot (x+5)^{\frac12}}{(2x-7)^9 \cdot (x)^{\frac13}} \right) = \ln\left((x-3)^4 \cdot (x+5)^{\frac12}\cdot (2x-7)^{-9} \cdot (x)^{-\frac13} \right)$

$= 4\ln(x-3)+\frac12 \ln(x+5)-9\ln(2x-7)-\frac13 \ln(x)$

3. Originally Posted by earboth
1. Use the following laws of logs:

$\log(a\cdot b)=\log(a)+\log(b)$

$\log\left(\dfrac ab \right)=\log(a)-\log(b)$

$\log\left(a^n\right)=n\cdot \log(a)$

2. $\ln\left(\dfrac{(x-3)^4 \cdot (x+5)^{\frac12}}{(2x-7)^9 \cdot (x)^{\frac13}} \right) = \ln\left((x-3)^4 \cdot (x+5)^{\frac12}\cdot (2x-7)^{-9} \cdot (x)^{-\frac13} \right)$

$= 4\ln(x-3)+\frac12 \ln(x+5)-9\ln(2x-7)-\frac13 \ln(x)$
great thank you soo much!

### write expression as the difference of logs

Click on a term to search for related topics.