Solve for $\displaystyle x$ in the inequality $\displaystyle 5^x> 25^2^x$.
Follow Math Help Forum on Facebook and Google+
Originally Posted by Kaloda Solve for $\displaystyle x$ in the inequality $\displaystyle 5^x> 25^2^x$. Take logs: $\displaystyle x\ln(5)>2x \ln(25)=2x \ln(5^2)=4x \ln(5)$ CB
An easier way $\displaystyle 5^x > 25^{2x}$ $\displaystyle 5^x > (5^2)^{2x}$ $\displaystyle 5^x > 5^{4x}$ $\displaystyle x > 4x$ $\displaystyle 0 > 3x$ $\displaystyle 0 > x$.
View Tag Cloud