If $\displaystyle z_{1},z_{2},z_{3}$ and $z'_{1},z'_{2},z'_{3}$ represent the vertices of two similar triangles ABC and PQR respectively then prove that

$\displaystyle

\big|\frac{\bar z'_{1}}{\bar z_{2}-\bar z_{1}}\big|.\big|\frac{z_{2}-z_{3}}{z'_{3}}\big|+\big|\frac{z'_{2}}{z_{2}-z_{1}}\big|.\big|\frac{\bar z_{3}-\bar z_{1}}{\bar z'_{3}}\big| \geq 1

$