Results 1 to 3 of 3

Math Help - problems: reciprocal, addition, subtraction, multiplication, division

  1. #1
    Newbie
    Joined
    Aug 2010
    Posts
    1

    problems: reciprocal, addition, subtraction, multiplication, division

    hi masters, math newbie here. just a background all i know right now is some arithmetic and algebra topics. i'm self-studying mathematics just recently. i have two questions.

    1. what is the mathematical process of getting the reciprocal?

    i'm longing for a concrete mathematical solution other than just simply flipping off the numerator and the denominator to get the reciprocal.

    1/3 -> (a missing mathematical process here) -> 3/1

    i thought it could be derived using my solution but something is missing. here's my solutions:

    1/3
    = 1^1 / 3^-1
    = 1^1 * 3^1 / 1^-1
    = 3^1 / 1^-1
    = 3/1

    (though i actually flip 3, am i self-contradicting?) the solution above is correct i guess.

    3/1
    = 3^1 / 1^-1
    = 1^1 / 1^-1 * 3^-1
    = 1^1 / 3^-2
    = 1/0.111111111

    the solution above does not permit me to arrive to the reciprocal of 3/1 which is 1/3 by using the same process as the first solution stated above.

    masters, i hope you can give me some light to this problem. i have been solving this for about one night and i haven't searched yet the internet. but i will search for it later after i post. thank you masters in advance.

    2. by accident, i devised another way of adding, subtracting, multiplying, and dividing by using the inverse property of these operations as illustrated below. is there any other way known in mathematics today that let us operate in these operations by using the givens with little to no modifications?

    when i was reading involutions in algebra i came across a thought that any number has it's own exponent of 1. so if i'm not mistaken 5 = 5 / 1 = 5^1 / 1^-1 and 1 / 5 = 1^1 / 5^-1. just correct me if i'm wrong though. so with that thought i come up with this method.

    multiplication:
    normal: a * b * , ... n = product
    mine : a^1 / b^-1 / , ... n^-1 = product

    normal: -235.98 * 72.123 * -93.8765 = 1,597,739.122
    mine : -235.98^1 / 72.123^-1 / -93.8765^-1 = 1,597,739.122

    normal: 2^3 * 4^5 * 6^7 = 2,293,235,712
    mine: (2^3)^1 / (4^5)^-1 / (6^7)^-1 = 2,293,235,712

    the mine solution:
    1. raise the first given by 1, just for clarity
    2. raise the other given by -1
    3. operate in division to find the product

    division:
    normal: a / b / , ... n = quotient
    mine: a^1 * b^-1 * , ... n^-1 = quotient

    normal: -235.98 / 72.123 / -93.8765 = 0.034853349
    mine: -235.98^1 * 72.123^-1 * -93.8765^-1 = 0.034853349

    normal: 2^3 / 4^5 / 6^7 = 2.790816472x10e-8
    mine: (2^3)^1 * (4^5)^-1 * (6^7)^-1 = 2.790816472x10e-8

    the mine solution:
    1. raise the first given by 1, just for clarity
    2. raise the other given by -1
    3. operate in multiplication to find the quotient

    i thought i could apply exponent modifications in addition and subtraction but to no success so i change the method.

    addition:
    normal: a + b + (-c) + , ... n = sum
    mine: a - (-b) - c - , ... n = sum

    normal: -235.98 + 72.123 + -93.8765 = -257.7335
    mine: -235.98 - -72.123 - 93.8765 = -257.7335

    the mine solution:
    1. retain the sign of the first given
    2. change the positive sign to negative sign and vice-versa for the other given
    3. operate in subtraction to find the sum

    subtraction:
    normal: a - b - (-c) - , ... n = difference
    mine: a + (-b) + c + , ... n = difference

    normal: -235.98 - 72.123 - -93.8765 = -214.2265
    mine: -235.98 + -72.123 + 93.8765 = -214.2265

    the mine solution:
    1. retain the sign of the first given
    2. change the positive sign to negative sign and vice-versa for the other given
    3. operate in addition to find the difference

    i know for the fact that the mine solution operates internally the normal solution which is the basis of the method. so far the mine solution works in all real numbers with consistency, and i apply it as part of my proofing system.

    i haven't tested it on imaginary numbers because i don't know yet how and i'm very confused with imaginary numbers. the number itself is an idea and an idea is an imaginary. within an imaginative number we have three types of sub-imaginative numbers in the name of imaginary number, negative number, and zero. imagine?

    so masters if you know how to use the imaginary numbers on these operations please enrich me.


    forgive me if my questions might not make sense. i know i'm no math genius in any possible way, so i trust in you. once again, thank you masters for your time.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member
    Joined
    Dec 2009
    From
    1111
    Posts
    872
    Thanks
    3
    Quote Originally Posted by vavavroom View Post
    hi masters, math newbie here. just a background all i know right now is some arithmetic and algebra topics. i'm self-studying mathematics just recently. i have two questions.

    1. what is the mathematical process of getting the reciprocal?

    i'm longing for a concrete mathematical solution other than just simply flipping off the numerator and the denominator to get the reciprocal.

    1/3 -> (a missing mathematical process here) -> 3/1

    i thought it could be derived using my solution but something is missing. here's my solutions:

    1/3
    = 1^1 / 3^-1
    = 1^1 * 3^1 / 1^-1
    = 3^1 / 1^-1
    = 3/1

    (though i actually flip 3, am i self-contradicting?) the solution above is correct i guess.

    3/1
    = 3^1 / 1^-1
    = 1^1 / 1^-1 * 3^-1
    = 1^1 / 3^-2
    = 1/0.111111111

    the solution above does not permit me to arrive to the reciprocal of 3/1 which is 1/3 by using the same process as the first solution stated above.

    masters, i hope you can give me some light to this problem. i have been solving this for about one night and i haven't searched yet the internet. but i will search for it later after i post. thank you masters in advance.

    2. by accident, i devised another way of adding, subtracting, multiplying, and dividing by using the inverse property of these operations as illustrated below. is there any other way known in mathematics today that let us operate in these operations by using the givens with little to no modifications?

    when i was reading involutions in algebra i came across a thought that any number has it's own exponent of 1. so if i'm not mistaken 5 = 5 / 1 = 5^1 / 1^-1 and 1 / 5 = 1^1 / 5^-1. just correct me if i'm wrong though. so with that thought i come up with this method.

    multiplication:
    normal: a * b * , ... n = product
    mine : a^1 / b^-1 / , ... n^-1 = product

    normal: -235.98 * 72.123 * -93.8765 = 1,597,739.122
    mine : -235.98^1 / 72.123^-1 / -93.8765^-1 = 1,597,739.122

    normal: 2^3 * 4^5 * 6^7 = 2,293,235,712
    mine: (2^3)^1 / (4^5)^-1 / (6^7)^-1 = 2,293,235,712

    the mine solution:
    1. raise the first given by 1, just for clarity
    2. raise the other given by -1
    3. operate in division to find the product

    division:
    normal: a / b / , ... n = quotient
    mine: a^1 * b^-1 * , ... n^-1 = quotient

    normal: -235.98 / 72.123 / -93.8765 = 0.034853349
    mine: -235.98^1 * 72.123^-1 * -93.8765^-1 = 0.034853349

    normal: 2^3 / 4^5 / 6^7 = 2.790816472x10e-8
    mine: (2^3)^1 * (4^5)^-1 * (6^7)^-1 = 2.790816472x10e-8

    the mine solution:
    1. raise the first given by 1, just for clarity
    2. raise the other given by -1
    3. operate in multiplication to find the quotient

    i thought i could apply exponent modifications in addition and subtraction but to no success so i change the method.

    addition:
    normal: a + b + (-c) + , ... n = sum
    mine: a - (-b) - c - , ... n = sum

    normal: -235.98 + 72.123 + -93.8765 = -257.7335
    mine: -235.98 - -72.123 - 93.8765 = -257.7335

    the mine solution:
    1. retain the sign of the first given
    2. change the positive sign to negative sign and vice-versa for the other given
    3. operate in subtraction to find the sum

    subtraction:
    normal: a - b - (-c) - , ... n = difference
    mine: a + (-b) + c + , ... n = difference

    normal: -235.98 - 72.123 - -93.8765 = -214.2265
    mine: -235.98 + -72.123 + 93.8765 = -214.2265

    the mine solution:
    1. retain the sign of the first given
    2. change the positive sign to negative sign and vice-versa for the other given
    3. operate in addition to find the difference

    i know for the fact that the mine solution operates internally the normal solution which is the basis of the method. so far the mine solution works in all real numbers with consistency, and i apply it as part of my proofing system.

    i haven't tested it on imaginary numbers because i don't know yet how and i'm very confused with imaginary numbers. the number itself is an idea and an idea is an imaginary. within an imaginative number we have three types of sub-imaginative numbers in the name of imaginary number, negative number, and zero. imagine?

    so masters if you know how to use the imaginary numbers on these operations please enrich me.


    forgive me if my questions might not make sense. i know i'm no math genius in any possible way, so i trust in you. once again, thank you masters for your time.
    Dear vavavroom,

    Let me shed some light into this problem.....

    First of all the reciprocal of a number(say x) is the number which multiplied gives the multiplicative identity 1. If the reciprocal of x is y.............

    By definition, x\times{y}=1\Rightarrow{y=\frac{1}{x}} hence we call \frac{1}{x} the reciprocal of x. Hope you understood!
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Junior Member
    Joined
    Oct 2012
    From
    India
    Posts
    61
    Thanks
    3

    Re: problems: reciprocal, addition, subtraction, multiplication, division

    Mathematical process is to assume numerator as 1000000000... (as many as you need for precision), and divide it by the denominator. After division, put the decimal place in exact location (corresponding to the number of zeroes).

    Salahuddin
    Maths online
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Addition Subtraction
    Posted in the Algebra Forum
    Replies: 0
    Last Post: August 25th 2010, 06:43 PM
  2. The Addition and subtraction Formulas
    Posted in the Trigonometry Forum
    Replies: 1
    Last Post: March 16th 2010, 06:31 PM
  3. Addition/Subtraction of logarithms
    Posted in the Algebra Forum
    Replies: 6
    Last Post: December 2nd 2009, 10:37 AM
  4. Surds - addition and and subtraction
    Posted in the Math Topics Forum
    Replies: 2
    Last Post: November 21st 2009, 12:04 AM
  5. Addition and Subtraction Properties
    Posted in the Geometry Forum
    Replies: 1
    Last Post: September 27th 2007, 07:56 PM

Search Tags


/mathhelpforum @mathhelpforum