Hello, celebciti!

Simplify:

and the second part is to find three values of x that may not be used

in the evaluation of the expression.

Multiply top and bottom by the LCD: (x + 1)(x - 1)

. . . . . . . . . . . . 2

(x + 1)(x - 1) . ------ + 1

. . . . . . . . . . . x - 1 . . . . . . . .2(x + 1) + (x + 1)(x - 1)

. . . . . . . . . . ------------- . = . ------------------------------

. . . . . . . . . . . . 1 . . . . . . . . . .(x - 1) + (x + 1)(x - 1)

(x + 1)(x - 1) . ------ + 1

. . - . . - . . . . .x + 1

. . . . . 2x + 2 + x² - 1 . . . . x² + 2x + 1 . . . .(x + 1)(x + 1)

. . = . ------------------- . = . -------------- . = . -----------------

. . . . . .x - 1 + x² - 1 . - . . . x² + x - 2 . . - . .(x - 1)(x + 2)

In the original expression, we see that: .x ≠ 1 and x ≠ -1

In the final form, we see that: .x ≠ -2