Maximum and minimum of $\displaystyle f(x) = 3x^4 - 8x^3 -48x^2 + 5$ in the interval $\displaystyle -3 \leq x \leq 5$
---
$\displaystyle f'(x) = 12x^3 - 24x^2 - 96x $
Now what do I do?
Maximum and minimum of $\displaystyle f(x) = 3x^4 - 8x^3 -48x^2 + 5$ in the interval $\displaystyle -3 \leq x \leq 5$
---
$\displaystyle f'(x) = 12x^3 - 24x^2 - 96x $
Now what do I do?