If : $\displaystyle f(x)=x^{(x+1)}\times (x+2)x^{(x+3)}$ Calculate : $\displaystyle f(0)-f(-1)+f(-2)-f(-3)$
Follow Math Help Forum on Facebook and Google+
Originally Posted by dhiab If : $\displaystyle f(x)=x^{(x+1)}\times (x+2)x^{(x+3)}$ Calculate : $\displaystyle f(0)-f(-1)+f(-2)-f(-3)$ $\displaystyle x^{x+1}x^{x+3}=x^{x+1+x+3}=x^{2x+4}$ $\displaystyle x^{2x+4}(x+2)=x^{2x+4}x+2x^{2x+4}=x^{2x+4+1}+2x^{2 x+4}=x^{2x+5}+2x^{2x+4}$
I think natural logs will help you out.
Originally Posted by wonderboy1953 I think natural logs will help you out. Why not just plug in the values? $\displaystyle 0^4=0$
View Tag Cloud