rationalize the denominator $\displaystyle \frac{\sqrt3 - \sqrt 2}{\sqrt 3 + \sqrt 2}$
$\displaystyle \frac{\sqrt3 - \sqrt 2}{\sqrt 3 + \sqrt 2}$
$\displaystyle = \frac{\sqrt3 - \sqrt 2}{\sqrt 3 + \sqrt 2} \times \frac{\sqrt3 - \sqrt 2}{\sqrt 3 - \sqrt 2}$
$\displaystyle = \frac{(\sqrt3 - \sqrt2)^2}{(\sqrt3)^2 -(\sqrt2)^2} $
$\displaystyle = \frac{(\sqrt3 - \sqrt2)^2}{3-2}$
Can you finish it now?