1. ## rationalize denominator

rationalize the denominator $\frac{\sqrt3 - \sqrt 2}{\sqrt 3 + \sqrt 2}$

2. Originally Posted by euclid2
rationalize the denominator $\frac{\sqrt3 - \sqrt 2}{\sqrt 3 + \sqrt 2}$
Multiply the numerator and denominator by $\sqrt3 - \sqrt 2$

3. Originally Posted by harish21
Multiply the numerator and denominator by $\sqrt3 - \sqrt 2$
i know to multiply by the conjugate, i just can't get the right answer

4. Originally Posted by euclid2
i know to multiply by the conjugate, i just can't get the right answer
$\frac{\sqrt3 - \sqrt 2}{\sqrt 3 + \sqrt 2}$

$= \frac{\sqrt3 - \sqrt 2}{\sqrt 3 + \sqrt 2} \times \frac{\sqrt3 - \sqrt 2}{\sqrt 3 - \sqrt 2}$

$= \frac{(\sqrt3 - \sqrt2)^2}{(\sqrt3)^2 -(\sqrt2)^2}$

$= \frac{(\sqrt3 - \sqrt2)^2}{3-2}$

Can you finish it now?

5. Originally Posted by harish21
$\frac{\sqrt3 - \sqrt 2}{\sqrt 3 + \sqrt 2}$

$= \frac{\sqrt3 - \sqrt 2}{\sqrt 3 + \sqrt 2} \times \frac{\sqrt3 - \sqrt 2}{\sqrt 3 - \sqrt 2}$

$= \frac{(\sqrt3 - \sqrt2)^2}{(\sqrt3)^2 -(\sqrt2)^2}$

$= \frac{(\sqrt3 - \sqrt2)^2}{3-2}$

Can you finish it now?
i keep getting 5/1 but the answer says 5-2root6

6. Originally Posted by euclid2
i keep getting 5/1 but the answer says 5-2root6
Remember: $(a-b)^2 = a^2 -2ab + b^2
$

$\therefore (\sqrt3 - \sqrt2)^2 = (\sqrt3)^2 - 2 \sqrt3 \sqrt2 +(\sqrt2)^2$

$= 3 - 2 \sqrt6 +2$