Results 1 to 4 of 4

Math Help - a log question

  1. #1
    Junior Member
    Joined
    Oct 2009
    Posts
    68

    a log question

    How do I answer this log equation?

    log_{2} x + log_{x} 2= 2<br />
    Follow Math Help Forum on Facebook and Google+

  2. #2
    -1
    e^(i*pi)'s Avatar
    Joined
    Feb 2009
    From
    West Midlands, England
    Posts
    3,053
    Thanks
    1
    Quote Originally Posted by shawli View Post
    How do I answer this log equation?

    log_{2} x + log_{x} 2= 2<br />
    Use the change of base rule on both parts

    \log_b(a) = \frac{\log_c(a)}{\log_c(b)}

    So that  \log_2(x) = \frac{\ln (x)}{\ln(2)}
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,809
    Thanks
    701
    Hello, shawli!

    Another approach . . .

    Thereom: . \log_ba \:=\:\frac{1}{\log_ab}



    \log_2 x + \log_x 2\:=\: 2

    We are given: . \log_2x + \log_x2 \:=\:2


    Use theorem: . \log_2x + \frac{1}{\log_2x} \:=\:2


    Multiply by \log_2x\!:\;\;(\log_2x)^2 + 1 \:=\:2\log_2x \quad\Rightarrow\quad (\log_2x)^2 - 2\log_2x + 1 \:=\:0


    Factor: . \left(\log_2x - 1\right)^2 \:=\:0\quad\Rightarrow\quad \log_2x -1 \:=\:0


    Therefore: . \log_2x \:=\:1  \quad\Rightarrow\quad x \:=\:2

    Follow Math Help Forum on Facebook and Google+

  4. #4
    Junior Member
    Joined
    Oct 2009
    Posts
    68
    Thanks!
    Follow Math Help Forum on Facebook and Google+

Search Tags


/mathhelpforum @mathhelpforum