I have a question that asks me to find the value of the expression $\displaystyle (.65)^5$ in logarithmic form.

Am I correct in assuming that I should be looking the logarithm that is five times greater than that of .65?

Or is the answer:

$\displaystyle \log (.68)^5=5\log(.68)=5\log (6.8*10^-1)$Therefore the answer is $\displaystyle 5*.8129$ or $\displaystyle 4.0645+(-1)=3.0645$ ?