For what values of 2^x does
2^x+2^x+1=4^x+4^x+1
Hello, Dragon!
Some parentheses and spaces would have helped.
I'm guessing what the problem is supposed to be . . .
For what values of 2^x does: .2^x + 2^(x+1) .= .4^x + 4^(x+1)
If I've interpreted the problem correctly, we get an entirely different answer.
We have: .2^x + 2·2^x .= .(2²)^x + (2²)^(x+1}
. . 3·2^x .= .2^(2x) + 2^(2x + 2)
. . 3·2^x .= .2^(2x) + 2²·2^(2x)
. . 3·2^x .= .2^{2x} + 4·2^(2x)
. . 3·2^x .= .5·2^(2x)
Divide by 2^x: .3 .= .5·2^x . **
And we have: .2^x .= .3/5
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
** . We can divide by 2^x because 2^x ≠ 0.