Solve for 'a' and 'b'.
x√x + y√y = 183
x√y + y√x = 182
Tis is all that is given in the question..
I will be very gateful to one who solves this..
$\displaystyle x\sqrt{x}+y\sqrt{y}= 183 $
$\displaystyle x^{\frac{3}{2}}+y^{\frac{3}{2}}= 183$
$\displaystyle x^{\frac{3}{2}}= 183-y^{\frac{3}{2}}$
$\displaystyle x^{\frac{1}{2}}= \sqrt[3]{183-y^{\frac{3}{2}}}$
$\displaystyle x= (\sqrt[3]{183-y^{\frac{3}{2}}})^2$
Sub this answer into
what do you get?