Originally Posted by

**Trentt** Find all zeros of the givin polynomial:

x^4 + x^3 - 6x² - 14x - 12

By Rational Roots theorem we check:

pm 1,pm 2, pm 3, pm 4, pm 6, pm 12

With luck we find the,

x=-2 and x=3

Thus,

(x+2)(x-3)=x^2-x-6

Divide,

Code:

x^4 + x^3 - 6x^2 - 14x - 12: x^2 - x -6 = x^2+2x+2
- x^4 +x^3 +6x^2
------------------------
2x^3 -14 x -12
-2x^3+2x^2+12x
---------------------
2x^2 -2x - 12
-2x^2+2x-12
---------------
0

Nice find the zeros of the polynomial,

x^2+2x+2

Use quadradic formula to complete this problem.