Originally Posted by

**MatteNoob** Ok, let me try again, I'll do some substitutions for

$\displaystyle +(100000 - 2500) - \Sigma_{t=1}^{48}\frac{2500 + 60}{(1+q)^{t}} = 0$

$\displaystyle +(G) - \Sigma_{t=1}^{x}\frac{F}{(1+q)^{t}} = 0$

so

$\displaystyle G = \Sigma_{t=1}^{x}\frac{F}{(1+q)^{t}}$

$\displaystyle G = \Sigma_{t=1}^{x}\frac{F}{(1+q)^{t}}$

$\displaystyle G \cdot \left(\frac{F}{(1+q)} - 1\right) = \left(\frac{F}{(1+q)}\right)^{x} - 1$

$\displaystyle \frac{GF}{(1+q)} - G + 1 = \left(\frac{F}{(1+q)}\right)^{x}$