how do i simplify: $\displaystyle \dfrac{-15x^5y^4-3}{5x^6y^4+x}$ it simplifies down to $\displaystyle \dfrac{-3}{x}$ I just need to know how. Thanks
Follow Math Help Forum on Facebook and Google+
Originally Posted by snaes how do i simplify: $\displaystyle \dfrac{-15x^5y^4-3}{5x^6y^4+x}$ it simplifies down to $\displaystyle \dfrac{-3}{x}$ I just need to know how. Thanks $\displaystyle \dfrac{-15x^5y^4-3}{5x^6y^4+x}$ $\displaystyle = \dfrac{-15x^5y^4-3}{x(5x^5y^4+1)} = \dfrac{-15x^4y^4-\frac{3}{x}}{(5x^5y^4+1)} = \dfrac{-\frac{3}{x} \left(5x^5y^4 + 1 \right)}{(5x^5y^4+1)} = -\frac{3}{x}$
Originally Posted by snaes how do i simplify: $\displaystyle \dfrac{-15x^5y^4-3}{5x^6y^4+x}$ it simplifies down to $\displaystyle \dfrac{-3}{x}$ I just need to know how. Thanks $\displaystyle \dfrac{-15x^5y^4-3}{5x^6y^4+x}= \dfrac{-3(5x^5y^4+1)}{x(5x^5y^4+1)}=\frac{-3}{x} $
View Tag Cloud