Hi there, I am a bit stuck as to how to do this question. I know the laws of logs but this has me stumped!
Thanks in advance
Express the following without logarithms:
lnP=1/2ln(Q+1)-3lnR+2
Thanks again for any input
Mike
you know that
$\displaystyle \log a + \log b = \log ab $
$\displaystyle \log a - \log b = \log \frac{a}{b} $
$\displaystyle \ln e = 1 $
$\displaystyle a\log b = \log b^a $
$\displaystyle \ln P = 1/2 \ln (Q+1) - 3\ln R + 2 $
$\displaystyle \ln P = \ln (Q+1)^{\frac{1}{2}} - \ln R^3 + 2 \ln e $
$\displaystyle \ln P = \ln \frac{(Q+1)^{\frac{1}{2}}}{R^3} + \ln e^2 $
$\displaystyle \ln P = \ln \left(\frac{(Q+1)^{\frac{1}{2}}}{R^3} \cdot e^2 \right) $
$\displaystyle P = \frac{(Q+1)^{\frac{1}{2}}}{R^3} \cdot e^2 $