Split into prime factors
$\displaystyle 20 = 2 \times 2 \times 5$
Use the rule $\displaystyle \frac{\sqrt{ab}}{\sqrt{c}} = \sqrt{a} \cdot \sqrt{b} \div \sqrt{c}$
$\displaystyle \sqrt{a^2} = a$
$\displaystyle \sqrt{\frac{2^2 \cdot 5 \cdot (x^2)^2 \cdot 5x}{2^2 \cdot x^2 \cdot x}}$
I get the answer $\displaystyle 5x $
Hello, deekay930!
Simplify: .$\displaystyle \frac{\sqrt{20x^4}\cdot\sqrt{5x}}{\sqrt{4x^3}} $
. . $\displaystyle \frac{\sqrt{20x^4}\cdot\sqrt{5x}}{\sqrt{4x^3}} \;=\;\frac{\sqrt{100x^5}}{\sqrt{4x^3}} \;=\;\sqrt{\frac{100x^5}{4x^3}} \;=\;\sqrt{25x^2} \;=\;5x$