Originally Posted by

**rgep** If a cubic f has three real roots then it has a (real) maximum and a minimum between the roots. So the derivative f' has to have two real roots, and the value of f at the maximum must be positive and the value at the minimum must be negative. In this case f' is 3d^2 - (ab+bc+ca). At d = sqrt((ab+bc+ca)/3) we have f = d(d^2 - (ab+bc+ca)) - 2abc = -(2/3)(ab+bc+ba)^(3/2) - 2abc and this is indeed negative. At d = -sqrt((ab+bc+ca)/2) we have f = d(d^2 - (ab+bc+ca)) - 2abc = (2/3)(ab+bc+ba)^(3/2) - 2abc. Now (ab+bc+bc)/3 >= (ab.bc.ca)^(1/3) by the AM-GM inequality and this shows that the value at the maximum is negative unless there is equality in the AM-GM which happens only when a,b,c are all equal. We conclude that if a=b=c there are three real roots, at -a,-a and 2a; if a,b,c are not all equal there is one real root which lies to the right of sqrt((ab+bc+ca)/3).