Results 1 to 2 of 2

Thread: vectors

  1. #1
    Member
    Joined
    Dec 2008
    Posts
    167

    vectors

    Vectors $\displaystyle \vec{a}$ and $\displaystyle \vec{b}$ both have the same length, which is 1. The angle between them is $\displaystyle 60^0$.

    Find $\displaystyle t$ so that $\displaystyle 2\vec{a} + \vec{b}$ and $\displaystyle t\vec{a} + 5\vec{b}$ are
    perpendicular

    I got that far:

    $\displaystyle cos \phi = \frac{\vec{a} \cdot \vec{b}}{\mid \vec{a} \mid \cdot \mid \vec{b} \mid} = \frac{\vec{a} \cdot \vec{b}} {1 \cdot 1} \Rightarrow \phi = \frac{1}{2} \cdot 1 \cdot 1 = \vec{a} \cdot \vec{b} $

    then i put $\displaystyle 2\vec{a} = \frac{1}{\vec{b}}$ into

    $\displaystyle (2\vec{a} + \vec{b}) \cdot (t\vec{a} + 5\vec{b}) = 0 $ and got that:

    $\displaystyle (\frac{1}{\vec{b}} + \vec{b}) \cdot (t \cdot \frac{1}{2\vec{b}} + 5\vec{b}) = 0$

    and continued for a couple more lines hoping it would become easier but i got nothing useful..how do you solve this?
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor

    Joined
    Aug 2006
    Posts
    21,782
    Thanks
    2824
    Awards
    1
    Quote Originally Posted by metlx View Post
    Vectors $\displaystyle \vec{a}$ and $\displaystyle \vec{b}$ both have the same length, which is 1. The angle between them is $\displaystyle 60^0$.

    Find $\displaystyle t$ so that $\displaystyle 2\vec{a} + \vec{b}$ and $\displaystyle t\vec{a} + 5\vec{b}$ are
    perpendicular

    I got that far:

    $\displaystyle cos \phi = \frac{\vec{a} \cdot \vec{b}}{\mid \vec{a} \mid \cdot \mid \vec{b} \mid} = \frac{\vec{a} \cdot \vec{b}} {1 \cdot 1} \Rightarrow \phi = \frac{1}{2} \cdot 1 \cdot 1 = \vec{a} \cdot \vec{b} $

    then i put $\displaystyle 2\vec{a} = \frac{1}{\vec{b}}$ into

    $\displaystyle (2\vec{a} + \vec{b}) \cdot (t\vec{a} + 5\vec{b}) = 0 $ and got that:

    $\displaystyle (\frac{1}{\vec{b}} + \vec{b}) \cdot (t \cdot \frac{1}{2\vec{b}} + 5\vec{b}) = 0$

    and continued for a couple more lines hoping it would become easier but i got nothing useful..how do you solve this?
    $\displaystyle \left( {2\overrightarrow a + \overrightarrow b } \right) \cdot \left( {t\overrightarrow a + 5\overrightarrow b } \right) = 2t\overrightarrow a \overrightarrow { \cdot a} + 2\overrightarrow a \cdot \overrightarrow b + t\overrightarrow a \cdot \overrightarrow b + 5\overrightarrow b \cdot \overrightarrow b $
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 3
    Last Post: Nov 15th 2011, 05:10 PM
  2. Replies: 3
    Last Post: Jun 30th 2011, 08:05 PM
  3. Replies: 2
    Last Post: Jun 18th 2011, 10:31 AM
  4. [SOLVED] Vectors: Finding coefficients to scalars with given vectors.
    Posted in the Pre-Calculus Forum
    Replies: 2
    Last Post: Jan 23rd 2011, 12:47 AM
  5. Replies: 4
    Last Post: May 10th 2009, 06:03 PM

Search Tags


/mathhelpforum @mathhelpforum