Help me to solve this thx :D

Evaluate 6^x , given that 3^(x+1)*2^(2x+1)=2^(x+2)

Printable View

- Oct 29th 2009, 06:27 PMJoelykshelp me solve this indices ASAP!!
Help me to solve this thx :D

Evaluate 6^x , given that 3^(x+1)*2^(2x+1)=2^(x+2) - Oct 29th 2009, 07:26 PMibnashraf
Question: Given that $\displaystyle 3^{x+1}\times2^{2x+1}=2^{x+2}$,

Required to find $\displaystyle 6^x$

Solution: first of all simplify each index;

$\displaystyle 3^{x+1}\times2^{2x+1}=2^{x+2}$

$\displaystyle \Rightarrow 3^x.3^1\times2^{2x}.2^1=2^x.2^2$

$\displaystyle \Rightarrow 3^x.3^1\times2^x.2^x.2^1=2^x.2^2$

Try to work it out from there .... combine $\displaystyle 3^x$ with $\displaystyle 2^x$ to give $\displaystyle 6^x$ on the LHS and hence make $\displaystyle 6^x$ the subject of the formula and then simplify the terms on the RHS to give the required result of $\displaystyle 6^x=\frac{2}{3}$ - Oct 29th 2009, 07:34 PMJoelyks
wow nice i got it thanks alot :D:D:D:D