Originally Posted by

**tinytiger** I have to find an expression for the **nth** term for all these sequences and write the expressions in the form $\displaystyle \frac {p}{q}$ where $\displaystyle p$, $\displaystyle q$, exists on integers.

__ Here are the sequences:__

$\displaystyle \log_2{8}$, $\displaystyle \log_4{8}$, $\displaystyle \log_8{8}$, $\displaystyle \log_{16}{8}$, $\displaystyle \log_{32}{8}$, $\displaystyle \log_{64}{8}$, $\displaystyle \log_{128}{8}$

$\displaystyle \log_{m}{m^k}$, $\displaystyle \log_{m^2}{m^k}$, $\displaystyle \log_{m^3}{m^k}$, $\displaystyle \log_{m^4}{m^k}$, $\displaystyle \log_{m^5}{m^k}$, $\displaystyle \log_{m^6}{m^k}$, $\displaystyle \log_{m^7}{m^k}$

I don't know where to begin or how to approach this. Help?