The LHS of the equation can't be factored. Therefore you can use either the Cardanic formula (see here: Cubic function - Wikipedia, the free encyclopedia) or an iterative method like Newton's method to get an approximate solution.
The LHS of the equation can't be factored. Therefore you can use either the Cardanic formula (see here: Cubic function - Wikipedia, the free encyclopedia) or an iterative method like Newton's method to get an approximate solution.
You could try looking for "rational roots". The "rational root theorem" says that any rational roots of are of the form x= r/s where s is an integer factor of a, the leading coefficient, and s is an integer factor of c, the constant term.
Here, the leading coefficient is "3" which has factors 1, -1, 3, and -3. The constant term is "8" which has factors 1, -1, 2, -2, 4, -4, 8, and -8. The only possible rational roots are 1, -1, 2, -2, 4, -4, 8, -8, 1/3, -1/3,, 2/3, -2/3, 4/3, -4/3, 8/3, and -8/3. Trying each of those will either give you a root or show that this equation has no rational roots. If there are no rational roots there will not be any solution simpler than Cardano's.