How do I isolate x here?
48.99 = 36.34(1+x)^2 + ([(1+x)^2 - 1]/x)
I get to:
(1+x)^2 = (48.99x + 1)/(36.34x + 1)
But I can't simplify my equation further.
Also, x > 0. I know x = 0.1355 but I can't get to it algebraically.
$\displaystyle 48.99 = 36.34(1+x)^2 + ([(1+x)^2 - 1]/x)$
$\displaystyle 48.99 = 36.34(x^2+2x+1) + ([(1+x)^2 - 1]/x)$
$\displaystyle 48.99 = 36.34x^2 + 72.68x + 36.34 + (x^2 + 2x / x)$
$\displaystyle 48.99x = 36.34x^2 + 72.68x + 36.34 + x^2 + 2x $
$\displaystyle 48.99x = 37.34x^2 + 74.68x + 36.34$
$\displaystyle -25.69x = 37.34x^2 + 36.34$
$\displaystyle -25.69x = 6.11x + 36.34$
$\displaystyle -31.8x = 36.34$
$\displaystyle x = -1.14$
Does this help?