If X and Y are both positive and log9X=log12Y=log16(X+Y), find the value of X/Y.
$\displaystyle \log_9 x = \log_{12} y = \log_{16} (x+y)$
or
$\displaystyle \frac{log_{10} x}{log_{10} 9}=\frac{log_{10} y}{log_{10} 12}=\frac{log_{10} (x+y)}{log_{10} 16}$
on solving
$\displaystyle \frac{log_{10} x}{log_{10} 9}=\frac{log_{10} (x+y)}{log_{10} 16}$
$\displaystyle \frac {log_{10} 16}{log_{10} 9}=\frac{log_{10} (x+y)}{log_{10} x}$
i stuck here