Originally Posted by

**unstopabl3** Q) A function is defined by $\displaystyle f(x) = (2x-3)^3-8$ for **x** is greater than or equal to **2** and x is less than or equal to **4**.

1) Find the range of f(x)

2) Find the domain of f(x)

Now normally I would use the completed square method to write the quadratic equations into a form such as $\displaystyle (x+b)^2+c$ and then plug in such a value for **x** to just leave **+c** behind which would be the range of my function and the value of **x** would become the domain. But as you can see the above equation is **^3** and not **^2**. So what is the easiest method to find the range and the domain here?

Also another thing I wanted to ask is that in such questions when they say something like "for **x** is greater than or equal to **2** and x is less than or equal to **4**" in front of the function, should we take this as the range or the domain or what? Please clarify a little bit on this thanks.