4 * 2^x = 9 * 6^x
I took ln of both sides, and couldent get anywhere=/ Can any1 help?
$\displaystyle 4 \cdot 2^x = 9 \cdot 6^x$
$\displaystyle \frac{4}{9} = \frac{6^x}{2^x}$
$\displaystyle \frac{4}{9} = \left(\frac{6}{2}\right)^x$
$\displaystyle \frac{4}{9} = 3^x$
$\displaystyle 4 = 9 \cdot 3^x$
$\displaystyle 4 = 3^{x+2}$
$\displaystyle \ln(4) = (x+2)\ln(3)$
$\displaystyle \frac{\ln{4}}{\ln{3}} = x + 2$
$\displaystyle x = \frac{\ln{4}}{\ln{3}} - 2$