1. ## simplifying with exponents

I just cant seem to get it. i know its simple, but i keep geting lost with the exponents, could anyone help?

2. Originally Posted by snypeshow
I just cant seem to get it. i know its simple, but i keep geting lost with the exponents, could anyone help?

Use $(a^m)^n = a^{mn}$ and $a^m\div a^n = a^{m-n}$

Difference of two squares will also come in handy.

3. so for the top part, (a-b) = m and (a+b) would be n, so you would get(a-b)(a+b)/x^b^2

which would give you $x^(a^2 - b^2)$

so would the answer be x^a^2 because there would be 2 x^b^2, both in the divisor and divident, so it would cancel it out?

4. I think I am following what you are saying, not 100% sure it is correct.

Spoiler:
$
\frac{(x^{(a-b)})^{(a+b)}}{x^{b^2}} = \frac{x^{(a-b)(a+b)}}{x^{b^2}}= \frac{x^{(a^2-b^2)}}{x^{b^2}} = x^{(a^2-b^2)-b^2} = x^{a^2-2b^2}
$

5. $x^{(a^2-b^2)-b^2}$

why the $-b^2$ at the end?

6. $
a^m\div a^n = a^{m-n}
$

7. oh yeah i completely forgot about that, i though they'd just cancel each other out

thanks alot!!!