I can't seem to simplify this correctly
$\displaystyle 20(5-\frac{t}{4})-2(5-\frac{t}{4})^2 + t(5-\frac{t}{4}) $
Can someone show me step by step how i break this down?
Hi
You can see that $\displaystyle 5-\frac{t}{4}$ can be factored
$\displaystyle 20\left(5-\frac{t}{4}\right)-2\left(5-\frac{t}{4}\right)^2 + t\left(5-\frac{t}{4}\right) = \left(5-\frac{t}{4}\right)\left(20 - 2 \left(5-\frac{t}{4}\right) + t\right)$
$\displaystyle 20\left(5-\frac{t}{4}\right)-2\left(5-\frac{t}{4}\right)^2 + t\left(5-\frac{t}{4}\right) = \left(5-\frac{t}{4}\right)\left(20-10+\frac{t}{2}+t\right)$
$\displaystyle 20\left(5-\frac{t}{4}\right)-2\left(5-\frac{t}{4}\right)^2 + t\left(5-\frac{t}{4}\right) = \left(5-\frac{t}{4}\right)\left(10+\frac{3t}{2}\right)$
ok i orginally wrote it wrong but i get what t6 do , but now im stuck on this part
$\displaystyle -2(5-\frac{t}{4})^2$
I keep getting
$\displaystyle -2(25 -10t+\frac{t^2}{4}$
which gives
$\displaystyle -50 + 20t+\frac{t^2}{8}$
But it doesn't fit into what my answer should be, i think i expanded that wrong.