# Thread: (αβ)(αγ)(βγ) = α²βγ+αβ²γ+αβγ² = [{α}/{αβγ}] + [{β}/{αβγ}] + [{γ}/{αβγ}]; No?

1. ## (αβ)(αγ)(βγ) = α²βγ+αβ²γ+αβγ² = [{α}/{αβγ}] + [{β}/{αβγ}] + [{γ}/{αβγ}]; No?

-----------------------------------------------------------------------------------------------------------------------
Given that $\alpha$, $\beta$, $\gamma$ are the roots of the equation $x^3+x^2+4x-5 = 0,$ find the cubic equation whose roots are $\alpha\beta,$ $\alpha\gamma,$ $\beta\gamma.$
-----------------------------------------------------------------------------------------------------------------------

$\alpha+\beta+\gamma = -1$; $\alpha\beta+\alpha\gamma+\beta\gamma = 4$; $\alpha\beta\gamma = 5.$

$x^3-(\sum{a}_{1})x^2+(\sum{a}_{1}{a}_2)x-(\prod{a}_{1}{a}_{2}{a}_{3}) = 0$

$\sum{a}_{1} = \alpha\beta+\alpha\gamma+\beta\gamma = 4$

$\sum{a}_{1}{a}_2 = (\alpha\beta)(\alpha\gamma) (\beta\gamma)$

$= \alpha^2\beta\gamma+\alpha\beta^2\gamma+\alpha\bet a\gamma^2$

$= \frac{\alpha}{\alpha\beta\gamma}+\frac{\beta}{\alp ha\beta\gamma} +\frac{\gamma}{\alpha\beta\gamma}$

$= \frac{\alpha+\beta+\gamma}{\alpha\beta\gamma}
$

$
= \frac{-1}{5}
$

$\prod{a}_{1}{a}_{2}{a}_{3} = (\alpha\beta)(\alpha\gamma) (\beta\gamma) = \alpha^2\beta^2\gamma^2 = (\alpha\beta\gamma)^2 = {5}^2 = 25
$

Since $x^3-(\sum{a}_{1})x^2+(\sum{a}_{1}{a}_2)x-(\prod{a}_{1}{a}_{2}{a}_{3}) = 0$

the cubic equation is $
x^3-4x^2-\frac{5}{1}x-25 = 0
$

Well, it turns out that the sum of roots in pairs should have been $-4$, not $\frac{-1}{5}$; and in checking, I'm hell sure that $(\alpha\beta)(\alpha\gamma) (\beta\gamma) = \frac{\alpha+\beta+\gamma}{\alpha\beta\gamma}.$

2. Let $x^3 + p x^2 + qx + r$ be the cubic you need to find.

You know you have $p = -4$ and $r = 5^2$.

Note that $\alpha \beta \alpha \gamma + \alpha \beta \beta \gamma + \alpha \gamma \beta \gamma = (\alpha \beta \gamma)(\alpha + \beta + \gamma)$ which gives you your $q$.

3. Originally Posted by Matt Westwood
Let $x^3 + p x^2 + qx + r$ be the cubic you need to find.

You know you have $p = -4$ and $r = 5^2$.

Note that $\alpha \beta \alpha \gamma + \alpha \beta \beta \gamma + \alpha \gamma \beta \gamma = (\alpha \beta \gamma)(\alpha + \beta + \gamma)$ which gives you your $q$.
Thank you. I wonder why I haven't noticed that. But $(\alpha \beta \gamma)(\alpha + \beta + \gamma) = (5)(-1) = -5$; not $-4$.

4. Oh, $(\alpha\beta)(\alpha\gamma) (\beta\gamma) \neq \frac{\alpha+\beta+\gamma}{\alpha\beta\gamma}
$
.

5. ah, nice observation