i dont understand this question:
in the quadratic equation x²+mx+2=0, the roots are consecutive. find the values of m.
i dont understand the part of the consecutive roots
Do you know Vieta's Theorem?
if a quadratic equation $\displaystyle ax^2+bx+c=0$ have two roots $\displaystyle \alpha,\beta$, then $\displaystyle a(x-\alpha)(x-\beta)=ax^2+bx+c\Leftrightarrow ax^2-a(\alpha+\beta)x+a\alpha\beta=0$
Thus $\displaystyle \alpha+\beta=-\frac{b}{a},\alpha\beta=\frac{c}{a}$to keep all the coefficient identical.
So $\displaystyle a+(a+1)=-m,a(a+1)=2$,$\displaystyle (-m)^2-4\cdot 2=(a+(a+1))^2-4a(a+1)=(a-(a+1))^2=1$, Then you can solve m!