1. ## Brownian Motion Help

Let Bt be a standard Brownian motion starting from 0. Define the stopping time
Tb = inf(t ≥ 0 : Bt = b). Find P(T1 < T-1 < T2 < T-2 < T3 < T-3) and P(T1 < T2 < T3 < T4 < T-1).

I am just beginning to do Brownian motions and don't know where to start. I know the properties of a Brownian motion but am confused by the way this problem is set up.

2. Originally Posted by napsinferno8
Let Bt be a standard Brownian motion starting from 0. Define the stopping time
Tb = inf(t ≥ 0 : Bt = b). Find P(T1 < T-1 < T2 < T-2 < T3 < T-3) and P(T1 < T2 < T3 < T4 < T-1).
First of all, do you know that $P_0(T_{-a} for $a,b>0$ ?

Then you must reduce to this formula using the strong Markov property. For instance, for the second one, the event $\{T_1 means that the B.M. hits 1 before -1, and then (after $T_1$) it hits 2 before -1, and then (after $T_2$) it hits 3 before -1, and finally it hits 4 before -1. Try to write down this idea in a more formal way using Markov property, and use the formula I mentioned above.