Consider a random sample of size n from a distribution with pdf

$\displaystyle f(x;q)=(Ln(q))^x/qx!$ if $\displaystyle x=0,1,...$ and $\displaystyle q>1 $and $\displaystyle 0$ otherwise.

a)Find a complete sufficient statistic for$\displaystyle q$

b)Find the maximum likelihood estimator of $\displaystyle q$

c)Find the Cramer-Rao Lower Bound for $\displaystyle q$

d)Find the Uniformly Minimum Variance Unbiased Estimator for $\displaystyle Ln(q)$

e)Find the Uniformly Minimum Variance Unbiased Estimator for $\displaystyle (Ln(q))^2$

(f) Find the Cramer-Rao Lower Bound for $\displaystyle (Ln(q))^2$

please help solve these questions