If you have:

$\displaystyle X - Binomial(n,\theta)$

$\displaystyle H_0 : \theta = \theta_0$
$\displaystyle H_a : \theta \neq \theta_0$

$\displaystyle p(H_0) = \pi$
$\displaystyle p(H_a) = 1-\pi$


given $\displaystyle H_a$, $\displaystyle \theta$ is $\displaystyle Beta(\alpha,\beta)$

what is

$\displaystyle
\frac{p(x | H_0)}{p(x | H_a)} ?
$

I know $\displaystyle p(x | H_0)$ but how do you derive the $\displaystyle p(x | H_a)$?

Thanks for any help.