Originally Posted by

**kingwinner** Is ln(k)/[ln(lambda_o/lambda_a)] an integer or not? I can think of 3 possible forms of the final answer, depending on the value of ln(k)/[ln(lambda_o/lambda_a)] :

(a) P(Z=ln(k)/[ln(lambda_o/lambda_a)])+P(Z=ln(k)/[ln(lambda_o/lambda_a)] +1)+P(Z=ln(k)/[ln(lambda_o/lambda_a)] +2)+...

(b) P(Z=ln(k)/[ln(lambda_o/lambda_a)] +1)+P(Z=ln(k)/[ln(lambda_o/lambda_a)] +2)+P(Z=ln(k)/[ln(lambda_o/lambda_a)] +3)+...

(c) P(Z=ln(k)/[ln(lambda_o/lambda_a)] +x)+P(Z=ln(k)/[ln(lambda_o/lambda_a)] +x+1)+P(Z=ln(k)/[ln(lambda_o/lambda_a)] +x+2)+... where 0<x<1 and it brings us to the smaller integer that is greater than ln(k)/[ln(lambda_o/lambda_a)]

Since we don't know the value of ln(k)/[ln(lambda_o/lambda_a)], I believe that we don't know whether it's an integer. In such a situation, should we choose (a), (b), or (c) as our final answer? Or is there a neater way to express it?

Thanks!